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Republic of Germany 
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Abstract. The Hermitian operators behind Wigner’s phase space function are recognised 
to be simple ordered exponentials of the dynamical variables. This operator basis is highly 
symmetric; it supplies a perfectly unbiased formulation of operator equations in terms of 
phase space functions, which is as close to classical physics as it possibly can be. We 
demonstrate how the symmetry properties of the basis can be exploited to simplify the 
computation of Wigner functions enormously. The ordered-operator methods are also 
applicable to the phase space functions of Kirkwood and Glauber type. Both kinds are 
briefly discussed with emphasis on how they differ from Wigner’s description. 

1. Introduction 

Wigner’s phase space function, introduced in 1932 as a tool for studying quantum 
corrections to classical equilibrium distributions [ 13 (but actually found some years 
earlier ‘for another purpose’?), has been studied extensively and applied to a large 
variety of problems (for a recent review see [4]; various applications are discussed in 
[ 5 ] ) .  In particular, the Wigner function is known to possess remarkable symmetry 
properties, some of which can be used for a unique characterisation [6]. 

In this paper we show that all these various symmetry properties are implications 
of the invariance, under arbitrary linear canonical transformations, of the Hermitian 
operator basis underlying Wigner’s phase space function. This invariance, stated in 
(10) below, signifies that the corresponding injunction for translating statements about 
operators into equations of numerical functions is perfectly unbiased: no point, no 
direction, no scale is distinguished from any other in phase space, and Hermitian 
dynamical variables are not preferred to their non-Hermitian alternatives. 

In contrast, other popular phase space functions are biased. For instance, Kirk- 
wood’s function [7] specifies a direction in phase space, and Glauber’s P function [8] 
fixes a scale. These two are representative examples of two classes of phase space 
functions, each class containing Wigner’s function. 

The second section of this paper deals with Wigner’s phase space function. We 
demonstrate that the operators of the Hermitian basis are simple ordered exponentials. 
This observation, combined with the above-mentioned invariance of the operator basis, 

+ See the somewhat mysterious footnote 2 in [ l ] .  It should also be mentioned that in 1930 Dirac [2] (in 
his seminal paper about introducing exchange corrections into Thomas-Fermi theory) made use of ‘corre- 
sponding classical functions’ which are essentially identical to Wigner’s function. Further, in 1931 Heisenberg 
was led to consider [3] a Wigner function when investigating incoherent scattering of x-rays off atoms. 
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can be employed to simplify the computation of Wigner functions enormously. We 
illustrate the power of our new formalism by a few examples. Naturally, the emphasis 
is on the novel approach; encyclopedic listings of properties of the Wigner functions 
are already available in the literature (see e.g. [4,9]). We shall, however, use the new 
insights for concise derivations of the fundamental equations obeyed by Wigner 
functions. A couple of properties, not as yet on record, are found as an additional 
bonus. Further, we show that, as a consequence of the total lack of bias stated above, 
Wigner’s phase space description is as close to classical dynamics as it possibly can 
be: whenever Heisenberg’s equations of motion are formally identical to the classical 
Hamilton equations, the Wigner function of the density operator obeys the classical 
Liouville theorem. It is for this reason that Wigner’s phase space function is the most 
natural starting point for studying quantum corrections to (semi-)classical treatments. 

Section 3 is concerned with Kirkwood-type scale-invariant descriptions, which are 
biased towards certain directions in phase space and towards Hermitian dynamical 
variables. Less detail is given here, since we are mainly interested in pointing out the 
more important respects in which Kirkwood’s function is similar to Wigner’s, and 
where the two functions differ significantly. 

In 8 4 we address Glauber-type rotationally invariant descriptions. These select a 
certain scale in phase space and appear more naturally in terms of non-Hermitian 
dynamical variables. Inasmuch as these are not quite on equal footing with the 
Hermitian variables, certain problems arise which require more careful considerations. 
In particular, some of the sets of operators, including those behind Glauber’s popular 
P function, are incomplete; they do not really provide a basis in operator space. 
Examples of simple operators which cannot be expanded in these ‘bases’ are presented. 

2. Wigner’s operator basis 

It suffices to consider one continuous degree of freedom, the generalisation to many 
being immediate. After picking an arbitrary scale for distances and the corresponding 
scale for momenta, the Hermitian dynamical variables are the dimensionless position 
and momentum operators q and p with the commutator [q ,  p ]  = i; all operators are 
functions of q and p .  Wigner’s phase space function of an operator F ( q , p )  is then 
defined by 

F d q ’ ,  p ’ )  = ds(q’-hlF(q,  p)Iq’+$s) exp(ip’s) ( 1 )  

where we do not include a factor of 1/27r, as most authors do. Instead of matrix 
elements referring to position only, it is more useful to employ mixed q, p or p ,  q matrix 
elements. Then we have the equivalent expressions 

Fw(q’, p ’ >  = I dq” dp”(q”lF(q, p)lp”)(p”lq”)2 exp[2i(p”-p’)(q”- ~ ’ I I  

= J dq” dp”(p”lF(q, p)Iq”)(q”l p”)2 exp[ -2i(q” - q’)( p”-p’)]. (2) 

The observation that, for example, 

(p”lq”)2 exp[2i(pf’-p’)(q’’- 4’11 = ( ~ ” 1 2  expPi(p -$I; ( q  - q711q”) (3) 
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where we make use of Schwinger’s notation [ 101 for ordered exponentials 

(4) 
“ 1  

exp(A; B ) =  -AkBk 
k = O  k! 

now shows that 

Fw(q’, P’) = Tr{F(q, P P  exP[2i(p ( 4  - 4‘)l) 

=Tr[F(q+q’ ,p+p’)2  exp(2ip; 411 ( 5 a )  

or, from the second version in (2), 

Fw(q’, P’) = Tr{F(q,p)2 exPC-Wq - q’); (P -P’)ll 
=Tr[F(q+q’,p+p’)2exp(-2iq;p)].  ( 5 6 )  

These equations can be inverted, so that the operator is given in terms of its Wigner 
function by 

For an elementary proof of this statement, evaluate ( p ” l F ( q ,  p ) l q ” ) .  
Equations (5) and (6) together signify the completeness of the operator basis 

2 exp[2i(p - p ’ ) ;  ( 4 -  q’)] = 2  exp[-2i(q -q‘ ) ;  ( p - p ’ ) ] .  (7) 
This equality states that these operators are Hermitian. We have thus identified the 
Hermitian operator basis underlying Wigner’s phase space function. The Wigner 
function itself is, therefore, the coefficient function that appears when the operator is 
expanded in the basis (7). As such it is the analogue of a wavefunction that describes 
a Hilbert-space state with respect to a Hilbert-space basis. 

The individual operators (7) are obtained from their ‘seed’ 2 exp(2ip; q )  by transla- 
tions in phase space, 

2 exp[2i(p - p ’ ) ;  ( 4  - 4‘)1= exp[-i(pq‘-p’q)l2 exp(2ip; 4 )  exp[i(pq’-p‘q)l. (8) 
As a consequence, Wigner’s function is translationally invariant in the sense that if 
g ( q , p )  = F ( q - q ” , p - p ” )  withnumbers q”andp” , then~w(q’ ,p’ )  = F w ( ” - q ” , p ’ - p ” ) .  
Further, because of (8) it suffices to study the properties of the seed, the properties of 
an arbitrary basis operator follow immediately. 

Here then is the fundamental symmetry property of the seed: if, for complex 
numbers a, p ,  a, and T,  

Q = a q + P p  P = U q + T p  (9) 

2 exp(2iP; Q) = 2 exp(2ip; q )  (10) 

are such that [Q, PI = i, i.e. (YT - pa = 1, then 

provided that P has left eigenstates (P’jP = P’(P’1 and Q has right eigenstates 919’) = 
I Q ’ ) Q ’ ,  which requires Im(a * p )  2 0 and Im(uT*) 2 0. The proof of this statement 
employs the transformation functions 

(q’“’’) = C,, exp[-(i /p)(faq”- q ‘ ~ ’ ’ + f ~ ~ ’ ’ ~ ) ]  

(PIP’) = C,  exp[-(i/a)(+aP”’- P ” p ’ + ~ T p f Z ) ]  
(11) 



628 B-G Englert 

where the constants C,, and C,  reflect the specific choice of phase and normalisation, 
in evaluating 

(P”IQ”) = ( l / i ) ( 2 n - p a ) ” * ~ ~ ~ ~ ~  exp(-iP”Q”) (12) 
and 

( ~ ” 1 2  exp(2ip; q)i Q”) = ( ~ / ~ ) ( ~ T ~ C T ) ” ~ C ~ C ~ ~  exp(iP”Q”) 

= (,”I Q”)2 exp(2iP”Q”) 

= (P”j2 exp(2iP; Q)i Q”) (13) 
which establishes (10). 

For cy = 7 = 0, p = -U = 1, equation (10) in conjunction with (8) reproduces (7). 
Other important examples are (i)  scaling transformations Q = e’q, P = e-’p; (ii) rota- 
tions in phase space Q = q cos 4 + p  sin 4, P = p  cos 4 - q sin 4 ;  (iii) introduction of 
non-Hermitian dynamical variables (‘creation and annihilation operators’ or ‘ladder 
operators’) 

Q = ( 1 /Jz) ( q + ip) = y 

2 exp(2ip; q )  = 2 exp(-2yt; y )  

P = ( 1 / J z )  ( p + iq) = iy + (14) 

(15) 

so that 

but not Q = iyt, P = -y  since the resulting seed 2 exp(2y; y‘) has an empty domain 
(see below). Here the requirement that Q have right eigenstates and P left ones is 
essential. 

In terms of the Wigner functions, the invariance (10) says that if F ( q , p ) =  
F ( a q  + p p ,  aq + ~ p )  then &(qf, p ’ )  = F,(cyq’+ p p ’ ,  aq’+ ~ p ‘ ) .  To illustrate how this 
insight can be used to simplify calculations, we evaluate the Wigner function of the 
projection operator to a generalised minimum uncertainty state (a ‘squeezed’ state), a 
problem that is the subject of a recent publication [ l l] .  This operator is 

(16) 

~ = ( ~ / J Z ) [ e ’ ( q c o s ~ + p s i n ~ ) + i e ~ ’ ( p c o s ~ - q s i n ~ ) ]  (17) 
is obtained when the transition to non-Hermitian operators (iii) is performed after 
rotating (ii) and changing the scale (i). The Wigner function of 

F(q, p )  = exp(- Y+; Y) = F (  Y ,  i UT) 

where (modulo irrelevant translations) 

F ( q ,  P) = exp(ip; 4 )  = 2n-S(q)8(p) 

&(q’, P‘) = Tr{2n-S(q)8(p)2 exp[2i(p - p ’ ) ;  ( 9  - q’)l) 

(18) 
is t 

= 2 exp(2ip’q’) (19) 

+ This is an illustration of the fact that the trace of an ordered operator F(q, p )  (all the q to the left of all 
the p or vice versa) is given by the classical phase space integral 

which, in conjunction with the cyclic property of traces, is a frequently used tool. 
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so tha t for  q + Q = Y a n d p - , P = i Y ’ w e g e t  

Fw(q’, p ’ )  = 2 exp[-e2’(q’ cos 4 +pl  sin 4)* -e-*’(p’ cos 4 - q’ sin 4 ) ’ ~  (20) 
We continue the discussion of the properties of the seed (10) by remarking that 

the rotational invariance (ii) implies that the seed commutes with y ty ,  the generator 
of these rotations. Consequently, the stationary uncertainty states 1 n) ,  which obey 

YtYln )= ln )n  y k l n ) = I n - k ) ( n ! / ( n - k ) ! ) 1 ’ 2  

( y ’ ) k \ n ) = I n + k ) ( ( n + k ) ! / n ! ) 1 ’ 2  
(21) 

are eigenstates of the seed. In particular, 

2 exp(2ip; q ) l n ) =  2 exp(-2yt; y ) l n )  

which identifies the eigenvalues 2(-1)” and tells us that 

2 exp(2ip; q )  = C ln )2( -1)~(n l=2(-1)~+~.  
02 

n = O  

Incidentally, we observe that the analogous evaluation of 

results in a divergent series, which justifies the assertion after (15). 
The spectrum of the seed is highly degenerate; for even values of n the eigenvalue 

is 2 and for odd values it is -2. Therefore, any state with a definite parity under the 
reflection 

9”-9 P’-P (25) 
is an eigenstate of the seed, twice the parity being the eigenvalue. In other words, the 
similarity transformation associated with the seed, 

is the space reflection (25). This fact seems not to be on record. Note that the seed 
is not unitary; its square is 4, as follows immediately from (23). 

The overall factor of 2, which prevents the seed from being unitary, is needed for 
the normalisation to unit trace: 

Tr(2 exp[2i(p - p ’ ) ;  ( q  - q’)]}  = Tr[2 exp(2ip; q ) ]  

2 exp(2ip”q”) = 1. = j “2,““” 

When applied to ( 6 ) ,  this has the consequence 
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which is a basic property of the Wigner function. A related statement is 

Tr(2 exp[2i(p-p’); (q-q’)]2 exp[2i(p-p”); ( q - q f ’ ) ] } = 2 n S ( q ’ - q ’ ‘ ) S ( p ’ - p ” )  (29) 
which expresses both the orthogonality and the completeness of the basis. Its funda- 
mental implication 

can be regarded as one of the defining properties of the Wigner function [6]. 

projection operator for the orthogonal direction: 

ds  2exp[2i(p-pf-s cos 4 ) ;  ( q - q ’ + s  sin 4)] 

When integrated along a straight line in phase space, the Wigner basis yields the 

J 
= 2.rrS[(q - q ’ )  cos 4 + ( p  - p ’ )  sin 41 

specific examples being 

dp‘ 2 exp[2i(p - p ’ ) ;  ( q  - q’)] = 2 d ( q  - q ’ )  

dq‘2 exp[2i(p-p’); (q-q’)]  =2nS(p-p‘) .  

J 
I 

Because of the translational and rotational invariance it suffices to prove the last 
statement, which is done by evaluating, for example, the ( ~ ” 1 ,  1s”) matrix element on 
both sides. Immediate consequences of (32) are 

and the corresponding statement to (31). Another implication is that, for any function 
f and arbitrary complex numbers a, p, 

if F(q,  P) = f ( a q  + PPI then Fw(q‘,  P’) = f ( a q ’ + P p ’ )  (34) 

which, in this generality, seems to be a new observation. 
The list of properties of the Hermitian Wigner basis would be incomplete without 

mentioning its relation to Weyl’s unitary basis [ 12, 131, which consists of the translators 
exp[i( pq’-p’q)]. Since 

Tr{exp[i(pq’-p’q)]2 exp[2i(p - p ” ) ;  ( q  - q”)]} = exp[i(p”q’-p’q”)] (35) 
we find according to (6) that 

exp[i(pq’-p’q)l= exp[i(p”q’-p’q’‘)]2 exp[2i(p - p ” ) ;  ( q  - q”)] (36) 

which is a two-dimensional Fourier transformation, with the inverse 

2exp[2i(p-p‘); (q-q‘)]= exp[ -i( p’q”  - p”q’)] exp[i( pq” - p”q)]. (37)  
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It is well known that the integral on the right-hand side constitutes the operator basis 
underlying Wigner’s phase space function; the explicit expression on the left is new. 
In this integral form, the Wigner basis has been studied by a number of people (a 
recent review is [9]) who in presenting their results created the misleading notion that 
the Fourier integral (37) is the most useful (if not the only) way of writing the Wigner 
basis. I disagree with this view; the ordered exponential, paired with the invariance 
(lo),  enables one to simplify calculations enormously, as we shall illustrate with 
examples below, in addition to the derivation of (20). 

There is one purpose for which the connection with Weyl’s unitary basis is essential, 
namely the generalisation to discrete degrees of freedom (like spin, for instance). Then 
there are only a finite number of physically different states, and operators with properties 
analogous to q and p are not available. The unitary Weyl operators, in contrast, possess 
counterparts in the form of operators that permute the states cyclically [ 131. We leave 
this aspect of the development to a separate publication [ 141. 

The Wigner basis is clearly distinguished from all others by the invariance property 
(10). As a consequence, the resulting equations of motion for Wigner’s phase space 
function are as close to classical dynamics as they can possibly be. We proceed by 
recalling that Heisenberg’s equations of motion 

are identical to the classical Hamilton equations, if the commutator (l/i)[F, HI is 
equal to the (symmetrised) Poisson bracket. For an arbitrary operator F this requires 
that the (not necessarily Hermitian) Hamilton operator is bilinear in q and p ,  i.e. H 
is a sum of terms proportional to q, p ,  q2 ,  p 2 ,  qp, and pq,  with arbitrary numerical 
coefficient, but higher-order terms like q3 or qp2 are not present in H. Such a 
Hamiltonian operator implies linear equations of motion for q ( t )  and p ( t ) ,  so that 
they are linearly related to their values at an earlier time. Thus, 

which, except for the innocuous translations by the numerical amounts q’( t )  and p’(  t ) ,  
are of the form (9). Because of (lo),  the basis operators are simply translated as time 
goes by 

2 expW(p( t )  -P”); ( d t )  - q”)1= 2 exp[Wp(O) - p ; ( t ) ) ;  ( d o )  - q;(t))l (40) 
where 

The basis as a whole remains unchanged. 
The time-dependent Wigner function 

Fdq’, P’, t )  = Tr{F(q(t), p ( t ) ,  t)2 exp[2i(p(t) -$I; ( d t )  - q’)l) 

= Tr{F(q(O), ~ ( 0 1 ,  t)2 expPi(p(0) --P% ( d o )  - q’)11 (42) 
is actually constant in time, unless the operator has an explicit time dependence. To 
make contact with classical phase space concepts, let us consider the density operator 
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p(q (  t ) ,  p (  t ) ,  t )  which specifies the system and is defined by the initial conditions. The 
fundamental properties of p are that it is Hermitian, its trace is unity and all expectation 
values (and therefore all eigenvalues) are non-negative. If the system is in a pure state 
then p is the corresponding projection operator. Since p is intrinsically time indepen- 
dent, dp ld t  = 0, we have 

a 1 
-pw(q’, P’, t )  = -p, Hlw(q’, P‘, t )  (43) 
at  

with obvious notation. Thus we are faced with finding the Wigner function of a 
commutator in terms of the individual Wigner functions. Of course, the solution of 
this problem is well known; a typical standard derivation that relies heavily upon the 
Fourier integral of (37) can be found in [9]; another one, based entirely on (1) is 
reproduced in [4]. Here we supply an argument which uses the ordered exponentials 
(7) directly. 

The essential information necessary for expressing the Wigner function of a product 
of two operators, say F ( q ,  p)G(q, p ) ,  in terms of Fw(q’, p ’ )  and Gw(q’, p ’ )  is the Wigner 
function of the product of two basis operators. Thus, our attention is drawn to 

Tr(2 exp[2i(p - p ’ ) ;  ( q  - q’)]2 exp[2i(p -p”); ( q  - q”)]2 exp[2i(p - p ” ’ ) ;  ( q  - q”’)]} =I dq“’dp”’dq“”dp””(p”’l2 exp[2i(p-p’); (q-q’)])q”’) 

x (4‘12 exp[ -2i( q - 4“); ( p - p”)]/ p””) 

x (p””12 exp[2i(p - P I ” ) ;  ( q  - qr”)]lq“”)(q“”lp”’) (44) 

which, in view of the basic property (3) of the ordered exponentials, is equal to 

+ 2i ( ,-t, - prt!)  ( q“u - q r u )  - ip”uq“!, + i i u p ” t ]  

= 4 exp[ -2ip’( q”- 4”’) -Zip”( q”’ - q’) - 2ip”’(q’ - q”)]. (45) 
With this, the known results 

4 exp[ -2ip’( q” - 4”’) - 2ip”( q’“ - q’) - 2ip”’( q’ - q”)] 
27T 

are reproduced immediately. The last version of (46) introduces the differential operator 
of the classical Poisson bracket for suggestive notational simplification (a similar 
notation is used in [15]). As a consequence, the Wigner function of a commutator is 
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Equation (43) then appears as 

a 
-pw(q’ ,  p ’ ,  t )  = -2 sin 
a t  

where only odd powers of derivatives (of pw or H,) are present. This is formally 
identical to Liouville’s theorem if the sine function can be equivalently replaced by 
its argument. Such is the situation, for arbitrary p, if Hw(q’, p ’ )  is bilinear in q’ and 
p ‘ ,  which in turn implies that H ( q ,  p )  is bilinear. This closes the argument: whenever 
Heisenberg’s equations of motion are (formally) identical to the classical Hamilton 
equations, the Wigner function of the density operator obeys the classical Liouville 
theorem. Indeed, Wigner’s phase space description is as close to classical physics as 
it possibly can be. This property is not shared by other phase space functions referring 
to different bases. Examples are given in the subsequent sections. 

A first demonstration of the power of our new approach is the derivation of (20) 
given above. As a second we choose the time evolution operator for a particle under 
a constant force k, 

dq” dp” 
exp(ikq”t) exp[-$( p”+bkt)2t] exp(-ik2t3/24) 

x 2  exp[2i(p”-p’)(q”-q’)] (50) 
is obtained immediately whereby, once again, the ordered forms of the operators 
provide an enormous simplification. Upon evaluating this elementary integral we find 

(51) F,(q’, p ’ )  = exp[-i(g 1 ‘2 - kq‘)t] exp(-ik2t3/24). 

Naturally, the second exponential factor constitutes the quantum corrections to the 
first, which is of classical appearance. It is worth mentioning that the Airy function 
Ai(x), with the defining property 

exp(-iz3/3) = dx Ai(x) exp(ixz) (52) I 
can be used to rewrite (51): 

F,(q’, p ’ )  = I dx Ai(x) exp[-i(~p’’-kq’-$~lk1~’~)f]. 

1 dx Ai(x)f(zp 1 ’ 2  - k q ’ - ; ~ l k ( ~ ’ ~ ) .  

(53) 

The exponent is now linear in t, as is the original one in (49). Consequently, Fourier 
transformation in t implies that the Wigner function of any operator of the form 
F ( q ,  p )  = f ( i p 2  - k q )  is given by 

(54) 

Such Airy averages have been employed successfully in studying quantum corrections 
to semiclassical models in atomic physics ([16] or, for more details, [17]). 
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The third illustrative example is the density operator of a harmonic oscillator at 
thermal equilibrium, 

p ( q , p )  = [1 -exp(-P)I exp(-Py'y) 

= Y exp(-yy+; Y )  ( 5 5 )  

where P > 0, y = 1 -e-', and y ,  y t  are the non-Hermitian dynamical variables of (14). 
Of course, we utilise the invariance property (10) and follow the strategy that led to 
(20), i.e. first we evaluate the Wigner function of y exp(iyp; q ) ,  

Tr{yexp(iyp; q ) 2  exp[-2i(q-q'); (p-$)I}=-exp 2Y (22_yy i-p'q' ) (56) 
2-Y 

and then perform the replacements q'+ y'  = (q '+  i p ' ) / a ,  p ' +  iy" = ( p ' +  is')/& The 
outcome is 

= 2 tanh( P/2)  exp[ - ( q'2 + pr2) tanh( P/2)]. (57) 

P'"'(4, P) = In)(nl ( 5 8 )  

The Wigner functions of the projection operators to the stationary uncertainty states In) 

are the last example. They can easily be extracted from (57).  Since 

CO 

= 2 e ~ p [ - ( q ' ~ + p ' ~ ) ]  ( -z )"~ , (2(q '~+p ' ' ) )  (60) 
n = O  

where z = e-' and we have recognised one of the generating functions of the Laguerre 
polynomials. Thus we find 

pk ' (q ' ,  p ' )  = 2( -1)" exp[-( qr2  +pr2) ]~ , , (2(  q'2+p'2)). (61) 

The power of the new formalism is strikingly revealed as soon as one compares this 
very brief derivation of (57) and (61) with the corresponding equations (2.90)-(2.115) 
of [4]. 

3. Kirkwood-type scale-invariant bases 

On either side of (15) we can replace the factors of 2 by another real number, A. In 
this section we shall deal with the scale-invariant bases characterised by the seeds that 
correspond to the left-hand side of (15). Equivalent expressions are 

;i exp(-iXq; p )  
2 776 ( 4 )  6 ( P) 

for A > 1 
for A = 1, ;i = a3 

A exp(iAp; q )  = 
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where i = A / ( A  - 1). For notational simplicity, we do not consider A < 1, to which 
values the equations can be extended without particular complications. In the limiting 
situation i = 1, A = 00, we have 

2Ts(p)s (q)  = exp(-iq; PI. (63) 

Incidentally, we remark that the A = 1 seed has already occurred in (18). It is the seed 
of the basis underlying Kirkwood’s phase space function [7]. The one with A = 2  is 
the Wigner seed, of course. 

Whereas the seeds (62) are evidently scale invariant and of unit trace, they are, for 
A # 2, neither Hermitian nor rotationally invariant. The former implies that Hermitian 
operators are not represented by real functions, as they are in Wigner’s description; 
the latter means that different directions in phase space are not equivalent. 

As (62) and (63) show, taking the adjoint is tantamount to replacing A by x, and 
vice versa. Indeed, their relation can be written in the symmetrical forms 

( A  - 1)(X- 1 ) =  1 ~i=~+i ( l / A ) + ( l / i )  = 1. (64) 

The A and the i bases are further connected by the orthogonality-completeness relation 

Tr{A exp[iA(p-p’); (q-q’)] i  exp[ii(p-p”);  (4-q”)])  

=Tr{A exp[iA(p-p’); (q-q‘)]A exp[-iA(q-q”); (p-p”)])  

= 2 7rs ( q’ - q’l) 6 ( p ’  - p ” )  (65) 

which is the analogue of (29) (and identical to that equation if A = 1 = 2). The expansion 
of an arbitrary operator is, therefore, 

with the coefficient function 

Since (65) pairs one basis with its adjoint, the statement corresponding to (30) is 

for all A. 
After presenting (67) in the form analogous to (1) 

F K , h ( q ’ ,  p ’ )  = I ds(q‘-s/ilF(q, P)lq’+s/A) exp(ip’s) (69) 

we observe that p ’  is still the momentum associated with the separation s = q”’- q” of 
the two q values to which the matrix element (q”(F(q ,  p ) ( q ’ ” )  refers, whereas q’= 
q ’ / A  + q”‘/I is now a weighted average. In the Wigner description, A = i = 2, it is the 
point halfway between q” and q”’. In particular, for A = 1, x = 00 we have 

F K , h = I ( q ’ ,  p ’ )  = (q’IF(q, p)b’)/(q’lp’)’ 

F K , A = m ( q ’ ,  p ’ )  = (p’IF(q,  p) lq ’ ) / (pf lq ’ ) .  

(70) 

a n d f o r A = c o , h = l  i t i s  

(71) 
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These can be cast in the following way: put F(q,  p )  in the (4; p)-ordered form, then 
replace q by q’ and p by p ‘ ;  this produces F K , A  q’, p ’ ) ;  likewise F K , A  =,( q’, p ’ )  is 
obtained by ( p ;  q )  ordering of F (  q, p ) .  Of course, inserting the delta functions of (62) 
and (63) into (67) establishes these procedures as well. 

For (relatively) simple Hamilton operators, the similarity transformation charac- 
terising the A basis, i.e. 

q A  exp(iAp; q )  = A exp(iAp; q)(1- A ) q  

A exp(iAp; q ) p  = (1 - A)pA exp(iAp; q )  

(see (26)) can be used, as a very efficient tool, for translating the operator equation 
of motion (38) into its numerical analogue. For illustration consider a free particle 
with H = i p 2 .  Combined with 

PA exp[ih(p-p‘); (q-q’)I= p ‘ + - ,  A exp[iA(p-p’); (q-q l ) l  (73) ( : a 3  
(72) implies 

[A e x p m  ( P  -P’k ( 4  - 471, W I  
= [ ( p f  -i L)2 - ( pf +i 4)2] A exp[iA ( p  - p ’ ) ;  ( q  - q’)] 

2 A aq‘ A aq 
(74) 

=i(-,‘+---)-A i ~ - i  a a exp[iA(p-p’);(q-q’)] 
2 A + i  aqf  dq’ 

which is a particular realisation of a general statement. We now insert p(q ,  p )  in the 
form (66) into (38), recalling that dp /d t  = 0, employ (74), and perform two partial 
integrations over q‘, to arrive at 

This differs from the corresponding classical Liouville equation, unless A = i = 2. In 
particular, for A = 1, ,i = CO we have ( A  - i ) / ( A  + i) = -1 and for A = CO, 1 = 1 we have 
( A  - i ) / ( A  +A) = +l. Even for a free particle, the dynamics of Kirkwood-type phase 
space functions differs significantly from classical dynamics. 

Let us close the discussion of the Kirkwood-type bases by pointing out that equations 
(33) stay valid when F,,,(q‘,p‘) is replaced by F K , A ( q ’ , p ’ ) .  Thus, as conjectured by 
Kirkwood, one can indeed ‘construct a number of different functions of p ’  and q’, all 
of which. . . give the correct results for the momentum and configuration probabilities 
after integration over p ’  or q” [7]. 

4. Glauber-type rotationally invariant bases 

Upon replacing the factors of 2 by A on the right-hand side of (13, we get the Hermitian 
rotationally invariant seeds 

a: 
A exp( -Ay+; y )  = 1 1n)A (1 - A )”( nl = A (1 - A  ) y t y  (76) 

n = O  
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where the alternative forms are immediate generalisations of (23). Equivalent ( q ;  p)-  
and ( p ;  q)-ordered expressions are (with A and /i as in (64)) 

A exp(-Ay+; Y )  

A 21r2 1 / i 2 - A 2  
x exp( -i 4 ;  P) exp( -5 m P 2 )  

= the same expression with q + p, p + -9. (77) 
As a matter of fact, these versions are only formally equivalent. It is true that they all 
give the same value to the (y+‘l, I$’) matrix element, but in other respects they are not 
equally good. Consider, for example, the trace of the seed. If it is evaluated in terms 
of the eigenstates of y and y’ (their basic properties being 

YIY’) = IY’)Y’ 

(IY’)lt = (Yt’ = (Y’)*l (y”ly”) = exp(y+’y’’) (78) 

(Yt’lY’ = Yt’(Yt’l 

where dy’ = dp’ dq’ if y’ = (q’+ ip’)/fi = (yt’)* in the integrand?; this reflects cy = 7 = 
l/&, p = U = i / f i ,  C,, = C, = T - ” ~  in (9 ) ,  (11) and (12)) then one obtains 

dq’ dp‘ 
A exp[-~y”y’] = - A exp[ -tA(q’2+p’2)] = 1 (79) J 2T 

Jy 
as expected. Whereas this integral converges for all A > 0, the series that sums the 
eigenvalues, 

A 2 A(l-A)”= = 1  
n = O  1 -(1 - A )  

diverges unless IA - 11 < 1, i.e. 0 < A < 2. Likewise the phase space integral obtained 
directly from the ( q ;  p)-ordered form (77) requires 1’5 A‘ for convergence; thus, here 
we need 0 < A s 2. 

Difficulties of this kind occur only for the Glauber-type seeds (76) but not for those 
of the Kirkwood type (62). The obvious reason is that the non-Hermitian operators 
y and y’ are not quite on an equal footing with the Hermitian q and p, because y has 
only right eigenstates and y’ only left ones. As a consequence, it is always possible 
to order an operator (yt;  y)-wise whereas ( y ;  y’) orderings are available for a restricted 
class of operators only$. 

Concerning the seeds (76) the significance of this remark is that only the seeds 
with A 2 2 generate a basis, whereas the set of operators 

exP[-i(pq’- p’q)lA exp(-Ayt; y )  exp[i(pq’-p’q)] 
= eXp(yty‘-yt’y)A exp(-Ayt; y )  exp(-yty’+yt’y) 

= A  exp[-A(y+-y”); (y-y’)] 

t It should be noted that this is only one way, the standard one, of parametrising the (dy‘) integral. More 
generally the independent complex variables y‘ and iyt’ are to be integrated along orthogonal contours. 
For details see [18]. 
8 Conditions under which operators can be expanded into y’ (y’)‘ power series are formulated in [19]. 
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is incomplete for A <2.  To make this point, we proceed from the analogue of (66) 
and (67), 

F ( q , p )  = FG,A(Y’,Y~’)A exp[-A(y’-yt’); (Y -y’)I (82) 27T 

where the coefficient function is the Glauber-type phase space function 

FG,A(Y’, y”) =Tr{F(q, P)x exp[-i(y’-yt’); (Y-Y‘)]). (83) 

Again the A basis is paired with the i basis, the relations (64) still holding. Thus, an 
operator can be expanded in the A basis if its trace with the elements of the 1 basis 
exists. Now consider the projection operator (16) which in (yt; y)-ordered form 
appears as 

(84) 

where the parameter p is related to q5 and z of (17) by p = exp(2iq5) tanh z, so that 
< 1. We insert this p ( F )  into the trace of (83) to find ~ $ 1 ,  and observe that the 

resulting integrals converge only if 

1 * 2  P Y Y ,  Y + >  =J1  -w* exp(-tpyT2) exp(-yt; Y )  exp(-Tp Y 

I / . L I S ( A / ~ ) ~ = ( A  -1)2. ( 8 5 )  

For A < 2,  the right-hand side is less than one, in which situation it is possible to pick 
/pI so large that the inequality ( 8 5 )  is not obeyed. The corresponding p(I1),  therefore, 
cannot be expanded in the A basis of Glauber type. In particular, for A = 1, when 
the phase space function is the so-called Glauber P function, (85) requires p = 0. In 
other words, there is no P function for the projectors to ‘squeezed states’ ( p  # 0). 

Quite analogous to the prescriptions given after (71), we have now: to obtain 
FG,A=l(y’, yt’) put F ( q ,  p )  in (y; y’)-ordered from, then replace y by y’ and yt by yt‘; 
likewise FG,A=co(y’,yt’) is obtained by yt; y ordering. Not surprisingly, it is easy to 
find operators for which there is no A = 1 phase space function, because ( y ;  y’) ordering 
is not generally possible [19]. 

An example for an operator, which can be expanded in any Glauber-type basis, is 
the density operator ( 5 5 ) .  We find 

PG,~(Y‘, Y”)  = T ~ { Y  exp(-yyt; y ) i  exp[-i(y’-yt’); (Y -v’)I) 

A y  Yt’Y’) 
- --exp( -- AY 

A - Y  A - Y  

where we recall that y = 1 - e-@, /3 > 0, thus 0 < y < 1, and remark that y”y’ = f( q’* + p ” ) .  
The analogue of (60), here 

exp( -- 2 zn&(y’, yt’) =- 
A - l + z  

A 
n =O A - l + z  

identifies the phase space functions of p‘” ’=  In)(ni as 

pg,\(y’, yt‘) = i( - : ) n  exp(-iyt’y’)ln(Axyt’y’). (88) 
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In the two extreme situations A + 1, i + CO and A +CO, i+ 1, the argument of the 
Laguerre polynomial becomes arbitrarily large (unless yt’y’ = 0, i.e. unless q’ = 0 and 
p‘= 0), so that it is effectively equal to its leading power, L,(x  >> 1) = ( - x ) ” / n ! ,  implying 

For A + 03, this gives the expected result 

P g , L  (Y’,  Y+‘)  = (v”ln)(nlv’)/(ut’lu’) 

(90) 1 ti i n  
=- (v Y 1 exP(-Yt’Y’) n !  

whereas for A + 1, (89) shows that there is no pg,)h=, , except for n = 0 when 

p i ; “ ,~ ! )~ (y ’ ,  y+’)  = i exp(-iyt‘yt)Ix,, = 27r8(q’)6(pt). (91) 

This typical breakdown of the Glauber P representation (see also [20]) is more 
immediately recognised upon setting A = 1 in (87), which produces 

in which positive powers of z on one side of the equation simply do not go together 
with negative powers on the other side. 

Our final remark about the Glauber-type phase space functions concerns the 
differential equation obeyed by the density operator of a free particle. Proceeding 
from the analogue of (72) 

yA exp(-Ayt; y )  = A  exp(-Ayt; y ) ( l  - A ) y  

A exp(-Ayt; y ) y t  = (1 -A)ytA exp(-Ayt; y )  

we find, by the same reasoning that resulted in (75), 

d t  

a 
-PG,A(Y‘, Yt’, t ,  

or, expressed in terms of q f  = (y”+y’)/& and p’=i(yt’-y’)/&, 

(93) 

Like (75), this is the corresponding classical Liouville equation only if A = = 2, when 
we are dealing with the Wigner function. For A = 00, i = 1 this equation was also 
obtained by O’Connell and Wigner [21] in a related context and by a very different 
method. 
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